Heston model
calibration_crosssectional(underlying_price, strikes, expiries, option_prices, initial_guess, put=False, weights=None, enforce_feller_cond=False)
Heston cross-sectional calibration
Recovers the Heston model parameters from options prices at a single point in time. The calibration is performed using the Levenberg-Marquardt algorithm.
Parameters
underlying_price : float
Price of the underlying asset.
strikes : numpy.array
One-dimensional array of option strikes. Must be of the same length as
the expiries and option_prices arrays.
expiries : numpy.array
One-dimensional array of option expiries. The expiries are the time
remaining until the expiry of the option. Must be of the same length as
the strikes and option_prices arrays.
option_prices : numpy.array
One-dimensional array of call options prices. Must be of the same
length as the expiries and strikes arrays.
initial_guess : tuple
Initial guess for instantaneous volatility :math:V_0
as :obj:float
and the Heston parameters :math:\kappa
, :math:\theta
, :math:\nu
and :math:\rho
, respectively, as :obj:float.
put : bool, optional
Whether the option is a put option. Defaults to False
.
weights : numpy.array, optional
One-dimensional array of call options prices. Must be of the same
length as the option_prices, expiries and strikes arrays.
Returns
tuple
Returns the calibrated instantaneous volatility :math:V_0
and the
Heston parameters :math:\kappa
, :math:\theta
, :math:\nu
and
:math:\rho
, respectively, as :obj:float
.
Example
import numpy as np from fyne import heston vol, kappa, theta, nu, rho = 0.0457, 5.07, 0.0457, 0.48, -0.767 underlying_price = 1640. strikes = np.array([1312., 1312., 1640., 1640., 1968., 1968.]) expiries = np.array([0.25, 0.5, 0.25, 0.5, 0.25, 0.5]) put = np.array([False, False, False, False, True, True])
option_prices = heston.formula(underlying_price, strikes, expiries, ... vol, kappa, theta, nu, rho, put) initial_guess = np.array([vol + 0.01, kappa + 1, theta + 0.01, ... nu - 0.1, rho - 0.1]) calibrated = heston.calibration_crosssectional( ... underlying_price, strikes, expiries, option_prices, initial_guess, ... put) [np.round(param, 4) for param in calibrated] [0.0457, 5.07, 0.0457, 0.48, -0.767]
Source code in src/fyne/heston.py
201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
|
calibration_panel(underlying_prices, strikes, expiries, option_prices, initial_guess, put=False, weights=None)
Heston panel calibration
Recovers the Heston model parameters from options prices across strikes, maturities and time. The calibration is performed using the Levenberg-Marquardt algorithm.
Parameters
underlying_price : numpy.array
One-dimensional array of prices of the underlying asset at each point
in time.
strikes : numpy.array
One-dimensional array of option strikes. Must be of the same length as
the expiries array.
expiries : numpy.array
One-dimensional array of option expiries. The expiries are the time
remaining until the expiry of the option. Must be of the same length as
the strikes array.
option_prices : numpy.array
Two-dimensional array of the call options prices. The array must be
:math:n
-by-:math:d
, where :math:n
is the size of
underlying_price
and :math:d
is the size of strikes
or
expiries
.
initial_guess : tuple
Initial guess for instantaneous volatility :math:V_0
as :obj:float
and the Heston parameters :math:\kappa
, :math:\theta
, :math:\nu
and :math:\rho
, respectively, as :obj:float.
put : bool, optional
Whether the option is a put option. Defaults to False
.
weights : numpy.array, optional
One-dimensional array of call options prices. Must be of the same
length as the option_prices, expiries and strikes arrays.
Returns
tuple
Returns the calibrated instantaneous volatilities :math:V_0
as a
:obj:numpy.array
and the Heston parameters :math:\kappa
,
:math:\theta
, :math:\nu
and :math:\rho
, respectively, as
:obj:float
.
Example
import numpy as np from fyne import heston kappa, theta, nu, rho = 5.07, 0.0457, 0.48, -0.767 underlying_prices = np.array([90., 100., 95.]) vols = np.array([0.05, 0.045, 0.055]) strikes = np.array([80., 80., 100., 100., 120., 120.]) expiries = np.array([0.25, 0.5, 0.25, 0.5, 0.25, 0.5]) put = np.array([False, False, False, False, True, True]) option_prices = ( ... heston.formula(underlying_prices[:, None], strikes, expiries, ... vols[:, None], kappa, theta, nu, rho, put)) initial_guess = np.array([vols[1] + 0.01, kappa + 1, theta + 0.01, ... nu - 0.1, rho - 0.1]) vols, kappa, theta, nu, rho = heston.calibration_panel( ... underlying_prices, strikes, expiries, option_prices, initial_guess, ... put) np.round(vols, 4) array([0.05 , 0.045, 0.055]) [np.round(param, 4) for param in (kappa, theta, nu, rho)] [5.07, 0.0457, 0.48, -0.767]
Source code in src/fyne/heston.py
287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 |
|
calibration_vol(underlying_price, strikes, expiries, option_prices, kappa, theta, nu, rho, put=False, vol_guess=0.1, weights=None, n_cores=None)
Heston volatility calibration
Recovers the Heston instantaneous volatility from options prices at a single point in time. The Heston model parameters must be provided. The calibration is performed using the Levenberg-Marquardt algorithm.
Parameters
underlying_price : float
Price of the underlying asset.
strikes : numpy.array
One-dimensional array of option strikes. Must be of the same length as
the expiries and option_prices arrays.
expiries : numpy.array
One-dimensional array of option expiries. The expiries are the time
remaining until the expiry of the option. Must be of the same length as
the strikes and option_prices arrays.
option_prices : numpy.array
One-dimensional array of call options prices. Must be of the same
length as the expiries and strikes arrays.
kappa : float
Model parameter :math:\kappa
.
theta : float
Model parameter :math:\theta
.
nu : float
Model parameter :math:\nu
.
rho : float
Model parameter :math:\rho
.
put : bool, optional
Whether the option is a put option. Defaults to False
.
vol_guess : float, optional
Initial guess for instantaneous volatility :math:V_0
. Defaults to
0.1.
weights : numpy.array, optional
One-dimensional array of call options prices. Must be of the same
length as the option_prices, expiries and strikes arrays.
Returns
float
Returns the calibrated instantaneous volatility :math:V_0
.
Example
import numpy as np from fyne import heston vol = 0.0457 params = (5.07, 0.0457, 0.48, -0.767) underlying_price = 1640. strikes = np.array([1312., 1312., 1640., 1640., 1968., 1968.]) expiries = np.array([0.25, 0.5, 0.25, 0.5, 0.25, 0.5]) put = np.array([False, False, False, False, True, True]) option_prices = heston.formula( ... underlying_price, strikes, expiries, vol, params, put ... ) calibrated_vol = heston.calibration_vol( ... underlying_price, strikes, expiries, option_prices, params, put ... ) np.round(calibrated_vol, 4) 0.0457
Source code in src/fyne/heston.py
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 |
|
delta(underlying_price, strike, expiry, vol, kappa, theta, nu, rho, put=False)
Heston Greek delta
Computes the Greek :math:\Delta
(delta) of the option according to the
Heston formula.
Parameters
underlying_price : float
Price of the underlying asset.
strike : float
Strike of the option.
expiry : float
Time remaining until the expiry of the option.
vol : float
Instantaneous volatility.
kappa : float
Model parameter :math:\kappa
.
theta : float
Model parameter :math:\theta
.
nu : float
Model parameter :math:\nu
.
rho : float
Model parameter :math:\rho
.
put : bool, optional
Whether the option is a put option. Defaults to False
.
Returns
float
Option Greek :math:\Delta
(delta) according to Heston formula.
Example
import numpy as np from fyne import heston v, kappa, theta, nu, rho = 0.2, 1.3, 0.04, 0.4, -0.3 underlying_price = 100. strike = 90. maturity = 0.5 call_delta = heston.delta(underlying_price, strike, maturity, v, kappa, ... theta, nu, rho) np.round(call_delta, 2) 0.72 put_delta = heston.delta(underlying_price, strike, maturity, v, kappa, ... theta, nu, rho, put=True) np.round(put_delta, 2) -0.28
Source code in src/fyne/heston.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
|
formula(underlying_price, strike, expiry, vol, kappa, theta, nu, rho, put=False, assert_no_arbitrage=False)
Heston formula
Computes the price of the option according to the Heston formula.
Parameters
underlying_price : float
Price of the underlying asset.
strike : float
Strike of the option.
expiry : float
Time remaining until the expiry of the option.
vol : float
Instantaneous volatility.
kappa : float
Model parameter :math:\kappa
.
theta : float
Model parameter :math:\theta
.
nu : float
Model parameter :math:\nu
.
rho : float
Model parameter :math:\rho
.
put : bool, optional
Whether the option is a put option. Defaults to False
.
Returns
float Option price according to Heston formula.
Example
import numpy as np from fyne import heston v, kappa, theta, nu, rho = 0.2, 1.3, 0.04, 0.4, -0.3 underlying_price = 100. strike = 90. expiry = 0.5 call_price = heston.formula(underlying_price, strike, expiry, v, kappa, ... theta, nu, rho) np.round(call_price, 2) 16.32 put_price = heston.formula(underlying_price, strike, expiry, v, kappa, ... theta, nu, rho, put=True) np.round(put_price, 2) 6.32
Source code in src/fyne/heston.py
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
vega(underlying_price, strike, expiry, vol, kappa, theta, nu, rho)
Heston Greek vega
Computes the Greek :math:\mathcal{V}
(vega) of the option according to
the Heston formula.
Parameters
underlying_price : float
Price of the underlying asset.
strike : float
Strike of the option.
expiry : float
Time remaining until the expiry of the option.
vol : float
Instantaneous volatility.
kappa : float
Model parameter :math:\kappa
.
theta : float
Model parameter :math:\theta
.
nu : float
Model parameter :math:\nu
.
rho : float
Model parameter :math:\rho
.
Returns
float
Option Greek :math:\mathcal{V}
(vega) according to Heston formula.
Example
import numpy as np from fyne import heston v, kappa, theta, nu, rho = 0.2, 1.3, 0.04, 0.4, -0.3 underlying_price = 100. strike = 90. maturity = 0.5 vega = heston.vega(underlying_price, strike, maturity, v, kappa, theta, ... nu, rho) np.round(vega, 2) 22.5
Source code in src/fyne/heston.py
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
|