Black-Scholes model
delta(underlying_price, strike, expiry, sigma, put=False)
Black-Scholes Greek delta
Computes the Greek delta of the option -- i.e. the option price sensitivity with respect to its underlying price -- according to the Black-Scholes model.
Parameters
underlying_price : float
Price of the underlying asset.
strike : float
Strike of the option.
expiry : float
Time remaining until the expiry of the option.
sigma : float
Volatility parameter.
put : bool, optional
Whether the option is a put option. Defaults to False
.
Returns
float Greek delta according to Black-Scholes formula.
Example
import numpy as np from fyne import blackscholes sigma = 0.2 underlying_price = 100. strike = 90. expiry = 0.5 call_delta = blackscholes.delta( ... underlying_price, strike, expiry, sigma ... ) np.round(call_delta, 2) 0.79 put_delta = blackscholes.delta( ... underlying_price, strike, expiry, sigma, put=True ... ) np.round(put_delta, 2) -0.21
Source code in src/fyne/blackscholes.py
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
|
formula(underlying_price, strike, expiry, sigma, put=False)
Black-Scholes formula
Computes the price of the option according to the Black-Scholes formula.
Parameters
underlying_price : float
Price of the underlying asset.
strike : float
Strike of the option.
expiry : float
Time remaining until the expiry of the option.
sigma : float
Volatility parameter.
put : bool, optional
Whether the option is a put option. Defaults to False
.
Returns
float Option price according to Black-Scholes formula.
Example
import numpy as np from fyne import blackscholes sigma = 0.2 underlying_price = 100. strike = 90. expiry = 0.5 call_price = blackscholes.formula(underlying_price, strike, expiry, ... sigma) np.round(call_price, 2) 11.77 put_price = blackscholes.formula(underlying_price, strike, expiry, ... sigma, put=True) np.round(put_price, 2) 1.77
Source code in src/fyne/blackscholes.py
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
implied_vol(underlying_price, strike, expiry, option_price, put=False, assert_no_arbitrage=True)
Implied volatility function
Inverts the Black-Scholes formula to find the volatility that matches the given option price. The implied volatility is computed using Newton's method.
Parameters
underlying_price : float
Price of the underlying asset.
strike : float
Strike of the option.
expiry : float
Time remaining until the expiry of the option.
option_price : float
Option price according to Black-Scholes formula.
put : bool, optional
Whether the option is a put option. Defaults to False
.
assert_no_arbitrage : bool, optional
Whether to throw an exception upon no arbitrage bounds violation.
Defaults to True
.
Returns
float Implied volatility.
Example
import numpy as np from fyne import blackscholes call_price = 11.77 put_price = 1.77 underlying_price = 100. strike = 90. expiry = 0.5 implied_vol = blackscholes.implied_vol(underlying_price, strike, ... expiry, call_price) np.round(implied_vol, 2) 0.2 implied_vol = blackscholes.implied_vol(underlying_price, strike, ... expiry, put_price, put=True) np.round(implied_vol, 2) 0.2
Source code in src/fyne/blackscholes.py
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
|
vega(underlying_price, strike, expiry, sigma)
Black-Scholes Greek vega
Computes the Greek vega of the option -- i.e. the option price sensitivity with respect to its volatility parameter -- according to the Black-Scholes model. Note that the Greek vega is the same for calls and puts.
Parameters
underlying_price : float Price of the underlying asset. strike : float Strike of the option. expiry : float Time remaining until the expiry of the option. sigma : float Volatility parameter.
Returns
float Greek vega according to Black-Scholes formula.
Example
import numpy as np from fyne import blackscholes sigma = 0.2 underlying_price = 100. strike = 90. maturity = 0.5 vega = blackscholes.vega(underlying_price, strike, maturity, sigma) np.round(vega, 2) 20.23
Source code in src/fyne/blackscholes.py
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
|